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Abstract. The geometry of the q-deformed line is studied. A real differential calculus is introduced and
the associated algebra of forms represented on a Hilbert space. It is found that there is a natural metric
with an associated linear connection which is of zero curvature. The metric, which is formally defined in
terms of differential forms, is in this simple case identifiable as an observable.

1 Introduction and motivation

There is a particularly simple noncommutative geometry,
the 1-dimensional q-deformed euclidean space [10,4,11] R

1
q

which can be completely analyzed from almost every point
of view. Although this ‘space’ has but one ‘dimension’ and
therefore there are no curvature effects, the correspond-
ing algebra is most conveniently generated using elements
which in the commutative limit correspond to coordinates
in which the metric does not take its canonical flat form. If
one writes, for example, the line element which describes
the distance along the y-axis ds2 = dy2 using the coor-
dinate x = ey then one must write ds2 = x−2dx2; the
metric has component g11 = x−2. It has been argued pre-
viously [6] that to within a scale factor there is essentially a
unique metric consistent with the noncommutative struc-
ture of an algebra. We shall see this clearly is the present
example. We shall give a description of this metric in all
detail since it is one of the rare cases in which the general
formalism can be understood in terms of simple physical
observables. In this section we shall give a brief review
of the description of the differential structure of a non-
commutative ‘space’ from the point of view of differential
forms and from the ‘dual’ point of view of twisted deriva-
tions. In Sect. 2, after a few introductory remarks concern-
ing the algebras C

n
q and R

n
q for general n, we describe the

algebra R
1
q. In Sect. 3 we introduce two conjugate differ-

ential calculi over this algebra and in Sect. 4 we propose
a construction of a real differential calculus. In Sect. 5 we
discuss a ‘dual’ point of view using twisted derivations. In
Sect. 6 we briefly mention integration. In Sect. 7 we dis-
cuss the geometry of R

1
q using the unique local metric. In

Sect. 8 we introduce Yang–Mills fields and in Sect. 9 we
discuss the Schrödinger equation and the Klein–Gordon
equation. In Sect. 10 we define an associated phase space
[11] and briefly discuss the harmonic oscillator. The final
section is devoted to a discussion of the effects of choosing

an alternative non-local metric. Implicitly this metric has
been used before [19].

Noncommutative geometry is geometry which is de-
scribed by an associative algebra A which is usually but
not essentially noncommutative and in which the set of
points, if it exists at all, is relegated to a secondary role.
For a thorough exposition of the subject we refer to the
book by Connes [5]; for a gentle introduction we refer to
Madore [21] or to Landi [18]. We shall be exclusively in-
terested here in algebras which are in some sense deforma-
tions of algebras of smooth functions over a manifold. A
differential calculus over A is another associative algebra
Ω∗(A), with a differential d, which plays the role of the
de Rham differential calculus and must tend to this calcu-
lus in the commutative limit. The differential calculus is
what gives structure to the set of ‘points’. It determines
the ‘dimension’ for example. It would determine the num-
ber of nearest neighbours in the case of a lattice. Over a
given A one can construct many differential calculi and the
one which one choses depends evidently on the limit man-
ifold one has in mind. There are many ways one can con-
struct differential calculi. Historically the first construc-
tion [5] was based on an operator which played in some
sense the role of the Dirac operator in ordinary geometry.
This is extremely well suited to study the global aspects of
geometries which in some sense resemble compact spaces
with positive-definite metrics. To study noncommutative
analogs of noncompact manifolds with metrics of arbitrary
signature it is perhaps more practical to use calculi which
are based on sets of derivations. We shall use this method
here. In all cases the entire calculus can be considered as
implicit in the module structure of the set of 1-forms. We
shall consider only the cases where this module is free as
a left or right module. It will in general not be free as a
bimodule.

There are basically two points of view. One can start
with a set of derivations in the strict sense of the word, a
set of linear maps of the algebra into itself which satisfy
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the Leibniz rule and use them as basis for the construction
of the associated differential forms. Or one can start with
a set of differential forms obtained for example from some
covariance criterion and construct a set of possibly twisted
derivations which are dual to the forms. By ‘twisted’ here
we mean derivations which satisfy a modified form of the
Leibniz rule. We shall describe both points of view and
compare them.

Let A be an algebra and λa, 1 ≤ a ≤ n a set of n ele-
ments of A which is such that only the identity commutes
with it. This rule implies that only multiples of the iden-
tity will have a vanishing differential. We have obviously
therewith excluded commutative algebras from considera-
tion. In the example we consider this condition will not be
satisfied, which explains why we can have a noncommuta-
tive geometry with only one dimension. We shall comment
on this latter. We introduce a set of derivations ea defined
on an arbitrary element f ∈ A by eaf = [λa, f ]. We have
here given the λa the physical dimensions of mass; we set
this mass scale equal to one. Suppose that the algebra is
generated formally by n elements xi. If one defines the
differential of f ∈ A by df(ea) = eaf exactly as one does
in ordinary geometry, or by any other method, then one
finds that in general

dxi(ea) 6= δi
a.

The ‘natural’ basis ea of the derivations are almost never
dual to the ‘natural’ basis dxi of the 1-forms. There are
basically two ways to remedy the above default. One can
try to construct a new basis θa which is dual to the basis of
the derivations or one can introduce derivations ∂i which
satisfy a modified form of the Leibniz rule and which are
dual to the dxi. One has then either, or both, of the fol-
lowing equations:

θa(eb) = δa
b , dxi(∂j) = δi

j .

In general these two points of view are equivalent. By con-
struction the θa commute with all elements of the algebra.
These commutation relations define the structure of the
1-forms as a bimodule over the algebra.

We recall briefly the construction based on derivations
[6]. One finds that for the ‘frame’ or ‘Stehbein’ θa to exist
the λa must satisfy a constraint equation

2λcλdP
cd

ab − λcF
c
ab −Kab = 0 (1.1)

with all the coefficients lying in the center A. The first set
of coefficients must be non-vanishing if the module of 2-
forms is to be nontrivial; it is related to a quantity which
satisfies a sort of Yang-Baxter equation. Equation (1.1)
gives to the set of λa the form of a twisted Lie algebra
with a central extension. It is obviously a very severe re-
striction. If the algebra is a ∗-algebra then the λa must be
antihermitian if the derivations are to be real. The invo-
lution can be extended to the general forms as well as to
the tensor product of 1-forms by introducing a set Jab

cd of
central elements. If one introduces a covariant derivative
and requires that it be real then the left and right Leibniz
rules are connected through the Jab

cd. If the Jab
cd satisfy

the Yang-Baxter equation then the extension of the co-
variant derivative to the tensor product of two 1-forms is
real. More details of this can be found elsewhere [13].

The dual point of view [28] consists in choosing the dif-
ferentials dxi as the starting point and constructing from
them a set of twisted derivations which satisfy a modified
Leibniz rule. Although at first sight this method seems to
be less general than the first, being normally restricted
to quantum spaces invariant under the coaction of some
quantum group, in fact, as we saw above, the quantum-
group structure is more or less implicit also in the first
approach in the form of the Yang-Baxter equation. The
dual point of view has also the advantage in the fact that
the twisted derivations can be given a bimodule structure
and an associated phase space is perhaps more naturally
constructed.

A metric on an algebra A can be defined [9] in terms
of the 1-forms of a differential calculus Ω∗(A) as a bilinear
map

g : Ω1(A) ⊗A Ω1(A) → A (1.2)
or [2] in terms of the twisted derivations X as a bilinear
map

g′ : X ⊗A X → A. (1.3)
We have distinguished here the two maps but in the case
which interests us here they are essentially one and the
same. In terms of the basis these equations can be written
respectively as

g(θa ⊗ θb) = gab, g′(∂i ⊗ ∂j) = g′
ij (1.4)

Since the θa commute with the elements of the algebra
one sees from the sequence of identities

fgab = g(fθa ⊗ θb) = g(θa ⊗ θbf) = gabf (1.5)

for arbitrary f ∈ R
1
q that the gab must lie in the center

of R
1
q; they must be real numbers. Since the ∂i do not

commute with the elements of the algebra one sees from
the sequence of (in)equalities

fg′
ij = g′(f∂i ⊗ ∂j) 6= g′(∂i ⊗ ∂jf) = g′

ijf

for arbitrary f ∈ R
1
q that the g′

ij cannot lie in the center of
R

1
q. The commutation relations between f and g′

ij are how-
ever in principle calculable in terms of the commutation
relations between f and ∂i. A more detailed exposition of
the geometry of the algebra R

3
q has been given elsewhere

[14].
Suppose that one particular ‘coordinate’ xi has a dis-

crete spectrum |k〉. Then it is possible to give an obser-
vational definition of the distance ds(k) between |k〉 and
|k + 1〉 in terms of g or g′ by identifying dx as the dif-
ference between the two corresponding eigenvalues. It is
our main purpose to study this identification in detail in
a particularly simple case.

2 The q-deformed euclidean spaces

The q-deformed euclidean spaces [10] C
n
q and R

n
q are alge-

bras which are covariant under the coaction of the quan-
tum groups SOq(n). To describe them it is convenient to
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introduce the projector decomposition of the correspond-
ing braid matrix

R̂ = qPs − q−1Pa + q1−nPt

where the Ps, Pa, Pt are SOq(n,R)-covariant q-deforma-
tions of respectively the symmetric trace-free, antisym-
metric and trace projectors. They are mutually orthogonal
and their sum is equal to the identity:

Ps + Pa + Pt = 1.

The trace projector is 1-dimensional and its matrix ele-
ments can be written in the form

Pt
ij

kl = (gmngmn)−1gijgkl,

where gij is the q-deformed euclidean metric. The q-eu-
clidean space is the formal associative algebra C

n
q with

generators xi and relations

Pa
ij

klx
kxl = 0

for all i, j. One obtains the real q-euclidean space by choos-
ing q ∈ R

+ and by giving the algebra an involution defined
by

x∗
i = xjgji.

This condition is an SOq(n,R)-covariant condition and n
linearly independent, real coordinates can be obtained as
combinations of the xi. The ‘length’ squared

r2 := gijx
ixj = x∗

i x
i

is SOq(n,R)-invariant, real and generates the center Z(Rn
q )

of R
n
q . We can extend R

n
q by adding to it the square root

r of r2 and the inverse r−1. For reasons to become clear
below when we introduce differential calculi over R

n
q we

add also an extra generator Λ called the dilatator and its
inverse Λ−1 chosen such that

xiΛ = qΛxi. (2.1)

We shall choose Λ to be unitary. Since r and Λ do not
commute the center of the new extension is trivial.

We shall be here interested only in the case n = 1. The
algebra R

1
q has only two generators x and Λ which satisfy

the commutation relation xΛ = qΛx. We shall choose x
hermitian and q ∈ R

+ with q > 1. This is a modified
version of the Weyl algebra with q real instead of with
unit modulus. We can represent the algebra on a Hilbert
space Rq with basis |k〉 by

x|k〉 = qk|k〉, Λ|k〉 = |k + 1〉. (2.2)

This is an infinite-dimensional version of the basis intro-
duced by Schwinger [26] to study the Weyl algebra when
q is a root of unity. It explains the origin of the expression
‘dilatator’. Contrary to the case considered by Schwinger
however the spectrum of Λ is continuous.

Introduce the element y by the action

y|k〉 = k|k〉 (2.3)

on the basis elements. Then the commutation relations
between Λ and y can be written as

Λ−1yΛ = y + 1. (2.4)

We can write x = qy as an equality within R
1
q. We shall

on occasion renormalize y. We introduce a renormalization
parameter z as

z = q−1(q − 1) > 0.

The renormalization is then given by the substitution

zy 7→ y. (2.5)

With the new value of y the spacing between the spectral
lines vanishes with z. We shall refer to the old units as
Planck units and the new ones as laboratory units. One
can show [22] that the von Neumann algebra generated by
Λ and x or y is a factor of type I∞.

3 The q-deformed calculi

One possible differential calculus over the algebra R
1
q is

constructed by setting dΛ = 0 and

xdx = dxx, dxΛ = qΛdx.

The frame is given by θ1 = x−1dx. This calculus has an
involution given by (dx)∗ = dx∗ but it is not based on
derivations and it has no covariance properties with re-
spect to SOq(1).

We consider therefore another differential calculus
Ω∗(R1

q) based on the relations [3]

xdx = qdxx, dxΛ = qΛdx (3.1)

for the 1-forms. If we choose

λ1 = −z−1Λ

then
e1x = qΛx, e1Λ = 0

and the calculus (3.1) is defined by the condition df(e1) =
e1f for arbitrary f ∈ R

1
q. By setting

λ2 = z−1x

and introducing a second derivation

e2Λ = qΛx, e2x = 0

one could extend the calculus (3.1) by the condition
df(e2) = e2f for arbitrary f ∈ R

1
q. One would find xdΛ =

qdΛx. We shall not do so since it will be seen that Λ is in
a sense an element of the phase space associated to x and
we are interested in position-space geometry.

The adjoint derivation e†
1 of e1 is defined by

e†
1f = (e1f∗)∗.
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The e†
1 on the left-hand side is not an adjoint of an opera-

tor e1. It is defined uniquely in terms of the involution of
R

1
q whereas e1 acts on this algebra as a vector space.

Since Λ is unitary we have (λ1)∗ 6= −λ1 and e1 is
not a real derivation. We introduce [3] therefore a second
differential calculus Ω̄∗(R1

q) defined by the relations

xd̄x = q−1d̄xx, d̄xΛ = qΛd̄x (3.2)

and based on the derivation ē1 formed using λ̄1 = −λ∗
1.

This calculus is defined by the condition d̄f(ē1) = ē1f for
arbitrary f ∈ R

1
q. The derivation ē1 is also not real. It is

easy to see however that

e†
1 = ē1 (3.3)

and therefore that (df)∗ = d̄f∗. By simple induction we
find that for arbitrary integer n

e1x
n = z−1(qn − 1)Λxn, ē1x

n = z−1(1 − q−n)Λ−1xn.

We can represent also Ω∗(R1
q) and Ω̄∗(R1

q) on Rq. For
the two elements dx and d̄x we have respectively

dx|k〉 = αqk+1|k + 1〉, d̄x|k〉 = ᾱqk|k − 1〉 (3.4)

with two arbitrary complex parameters α and ᾱ. One sees
that (dx)∗ = d̄x if and only if α∗ = ᾱ. It is possible to
represent d and d̄ as the operators

d = −z−1α adΛ, d̄ = z−1ᾱ adΛ−1.

It is easy to see that the commutation relations (3.1)
and (3.2) are satisfied. The above representations are cer-
tainly not unique [23].

The frame elements θ1 and θ̄1 dual to the derivations
e1 and ē1 are given by

θ1 = θ11dx, θ
1
1 = Λ−1x−1,

θ̄1 = θ̄11 d̄x, θ̄
1
1 = q−1Λx−1.

(3.5)

On Rq they become the operators

θ1 = α, θ̄1 = ᾱ (3.6)

proportional to the unit element. They were so construct-
ed. The algebra R

1
q is a subalgebra of the graded alge-

bra of forms Ω∗(R1
q) and the representation (2.2) can be

extended to a representation of the latter. In fact since
Ω1(R1

q) and Ω̄1(R1
q) are free R

1
q-modules of rank one with

respectively the special basis θ1 and θ̄1 we can identify

Ω∗(R1
q) =

∧∗ ⊗ R
1
q, Ω̄∗(R1

q) =
∧∗ ⊗ R

1
q

where
∧∗ is the exterior algebra over C

1 and so the ex-
tension is trivial.

From the two differential calculi Ω∗(R1
q) and Ω̄∗(R1

q)
we would like to construct a real differential calculus
Ω∗

R(R1
q) with a differential dR such that (dRf)∗ = dRf

∗.
The construction has nothing to do with the structure of
R

1
q so we give it in terms of a general algebra A.

4 A real calculus

Consider an algebra A with involution over which there
are two differential calculi (Ω∗(A), d) and (Ω̄∗(A), d̄) nei-
ther of which is necessarily real. Consider the product al-
gebra Ã = A × A and over Ã the differential calculus

Ω̃∗(Ã) = Ω∗(A) × Ω̄∗(A). (4.1)

It has a natural differential given by d̃ = (d, d̄). The em-
bedding

A ↪→ Ã
given by f 7→ (f, f) is well defined and compatible with
the involution

(f, g)∗ = (g∗, f∗) (4.2)

on Ã.
Let X and X̄ be two derivations of A. Then X̃ =

(X, X̄) is a derivation of Ã. We recall that a derivation
X of an algebra A is real if for arbitrary f ∈ A we have
Xf∗ = (Xf)∗. We saw in the previous section that e1 and
ē1 are not real. Then X̃ is a real derivation if

X̃(f, g))∗ = (X̃(f, g))∗. (4.3)

This can be written as the conditions

X̄f∗ = (Xf)∗, Xg∗ = (X̄g)∗.

The essential point to notice is that A does not necessarily
remain invariant under real derivations of Ã. This is to
be expected since if A had ‘interesting’ real derivations
they could be used to construct directly a real differential
calculus over A.

Suppose that Ω∗(A) is defined in term of a set of inner
derivations ea = adλa and that Ω̄∗(A) is defined in term
of a set of inner derivations ēa = ad λ̄. Suppose also that
the corresponding ẽa = (ea, ēa) are real derivations of Ã.
From (4.3) we see that this will be the case if and only
if λ̄a = −λ∗

a. We saw in the previous section that ẽ1 =
(e1, ē1) is real and that in fact λ̄1 = −λ∗

1. We define an
involution on Ω̃∗(Ã) by the condition

(d̃(f, g))∗(ẽa) = (ẽa(f, g))∗ = ẽa(g∗, f∗).

The differential d̃ is real by construction [13].
Define AR to be the smallest algebra which contains A

and which is stable under the action of the derivations ẽa.
The image in Ã of the commutative subalgebra A0 ⊂ A of
A generated by x is invariant under the involution (4.2).
Define eRa to be the restriction of ẽa to AR and dR to be
the restriction of d̃ to AR. We have then

dRf(eRa) = (eaf, ēaf) (4.4)

and dR is also real. We define

Ω1
R(A) ⊂ Ω̃1(Ã) (4.5)

to be the AR-bimodule generated by the image of dR. We
write Ω1

R(A) instead of Ω1
R(AR) since we keep Ω0

R(A) =
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A. The module structure determines a differential calculus
(Ω∗

R(A), dR). Suppose there exists a frame θa for Ω∗(A)
and a frame θ̄a for Ω̄∗(A). We can extend also the invo-
lution (4.2) to all of Ω∗

R(A) by setting

(θa)∗ = θ̄a

and we can define Ω1
R(A) to be the AR module generated

by
θa

R = (θa, θ̄a).

This is consistent with the previous definition since

dRf = eRafθ
a
R, eRaf ∈ AR.

From the relations

θa(eb) = δa
b , θ

a(ēb) = 0,
θ̄a(eb) = 0, θ̄1(ēb) = δa

b

(4.6)

it follows that the frame dual to the derivation eRa is
indeed θa

R:
θa

R(eRb) = δa
b .

If we define the ‘Dirac operators’

θ = −λaθ
a, θ̄ = −λ̄aθ̄

a, θR = −λRaθ
a
R (4.7)

then we find from the Equation (4.4) that for all f ∈ A
df = −[θ, f ], d̄f̄ = −[θ̄, f ], dRf = −[θR, f ].

Except for Ω0
R(A) = A we can write

Ω∗
R(A) =

∧∗ ⊗ AR

where
∧∗ is the algebra over C generated by the θa

R.
We are now in a position to construct a real differential

calculus over R
1
q. According to the general remarks we see

that eR1 = (e1, ē1) is a real derivation of R
1
qR and and

that it is inner

eR1 = adλR1 λR1 = (λ1, λ̄1) = z−1(−Λ,Λ−1). (4.8)

Because of the identity

eR1x = (qΛ,Λ−1)x (4.9)

we conclude that

xdRx = (q, q−1)dRxx, dRxΛ = qΛdRx. (4.10)

These are the real-calculus equivalent of the relations (3.1)
and (3.2). A representation of the 1-forms of the differ-
ential calculus Ω∗

R(R1
q) can be given on the direct sum

Rq ⊕Rq of two separate and distinct copies of Rq, one for
dx and one for d̄x. From (3.4) one sees that dRx can be
represented by the operator

dRx|k〉 = qk(qα|k + 1〉 + ᾱ|k − 1〉).
We have placed a bar over the second term to underline
the fact that it belongs to the second copy of Rq.

Since the Equations (4.6) involve (in the case A = R1
q)

e1 and ē1 considered as derivations they cannot be imple-
mented on Rq. However e1 and ē1 can be considered as
‘annihilation’ operators which map Ω1

R(R1
q) into Ω0

R(R1
q).

Similarly θ1 and θ̄1 have an interpretation [16] as ‘cre-
ation’ operators which take Ω1

R(R1
q) into Ω2

R(R1
q) ≡ 0. On

Rq ⊕ Rq the involution is given by the map α 7→ ᾱ. We
shall choose

α = 1, ᾱ = 1 (4.11)

so that the map simply exchanges the two terms of Rq ⊕
Rq. On Rq ⊕ Rq we have the representation

θ1R = 1. (4.12)

If dR is to be a differential then the extension to higher
order forms much be such that d2

R = 0. We have then

(dRx)2 = 0. (4.13)

It follows that

dRθ
1
R = 0, (θ1R)2 = 0. (4.14)

The module structure of Ω1
R(R1

q) is given by the relations
(4.10), which are equivalent to the condition that θ1R com-
mute with all the elements of R

1
q. The algebraic structure

of Ω∗
R(R1

q) is defined by the relations (4.14).
The algebra R

1
q is a subalgebra of the graded alge-

bra of forms Ω∗(R1
q) and the representation (2.2) can be

extended to a representation of the latter. Again since
Ω1

R(R1
q) is a free R

1
q-module of rank one with the special

basis θ1R we can identify

Ω∗
R(R1

q) =
∧∗ ⊗ R

1
q

where
∧∗ is the exterior algebra over C

1 and so the ex-
tension is trivial. The θ1R here is to be interpreted as an
element on the

∧∗ and the equality gives its representa-
tion as the unit in R

1
q. The second of Equations (4.14) is

to be interpreted then as the equation 1 ∧ 1 = 0 in the
exterior algebra.

The forms θ1, θ̄1 and θ1R are closed. They are also
exact. In fact if we define K ∈ R

1
q × R

1
q by

K = z(Λ−1, Λ), K∗ = K, (4.15)

then we find that

θ1 = d(zΛ−1y), θ̄1 = d̄(zΛy), θ1R = dR(Ky).

One can always write a number x as the sum of a
complex number z and its complex conjugate z̄. If some
invariance property were to forbid us from writing any
formula involving dx then we would have to express it in
terms of dz and dz̄. What we have done in this section is
equivalent to just this. It is not even interesting from the
point of view of module structure; we have considered the
simple direct sum of two free modules and the submodule
defined in (4.5) is also free, with θ1R as a generator. To a
certain extent what we have done is similar in spirit to
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the doubling of the rank of the module of 1-forms pro-
posed by previous authors accompanied by an ‘abstract’
isomorphism [12] to then effectively reduce the rank by
one half. One can also construct a (smaller) real differen-
tial calculus over R

1
q using the derivation ad (λ1 + λ̄1) but

this calculus has a set of 1-forms with a more complicated
module structure than the one we have constructed. There
would be no simple relation like (4.10) between xdRx and
dRxx.

The limit q → 1 is rather difficult to control. From the
relations of the algebra and the two differential calculi one
might expect Λ → 1. This is consistent with the limiting
relations e1x = ē1x = x and the intuitive idea that x is an
exponential function on the line. However the represen-
tation (2.2) of the algebra becomes quite singular. In the
representation one has rather x → 1. This would imply
that the parameters α and ᾱ must tend to zero as q → 1.
If one renormalizes according to (2.5) then one finds that
the relation (2.4) is consistent with the limit Λ → 1 as
q → 1. We shall assume this to be the case. We have then

lim
q→1

AR = A

and the real differential calculus coincides with the diag-
onal elements of the product in (4.1).

5 The q-deformed derivatives

We now look at the differential calculus from the dual
point of view. We introduce a twisted derivation ∂1 dual
to the differential d. For every f ∈ R

1
q we require that

df(∂1) = ∂1f . If one uses the (historical) convention of
writing df = dxf1, with the differential to the left, then
this means that for arbitrary f ∈ R

1
q

∂1f = dx(∂1)f1 = f1. (5.1)

Consider the case f = x2. Then df = dx(1 + q)x and
so f1 = (1 + q)x. But df(∂1) = ∂1x

2. Therefore ∂1x
2 =

(1+q)x Consider the case f = Λx. Then df = dxq−1Λ and
so f1 = q−1Λ. But df(∂1) = ∂1(Λx). Therefore ∂1(Λx) =
q−1Λ. By considering arbitrary polynomials in x and Λ
one finds the commutation relations

∂1x = 1 + qx∂1, ∂1Λ = q−1Λ∂1. (5.2)

It is to be noticed here that the module structure of the
differential forms is considered as fixed and the commuta-
tion relations above are derived from it. When a differen-
tial calculus is based on derivations the module structure
of the forms is derived from the Leibniz rule. Notice also
that we are here considering x as an operator on R

1
q con-

sidered as a vector space. We should in principle put a hat
on it to distinguish it from the element x in R

1
q considered

as an algebra. We are also considering ∂1 as an operator on
R

1
q considered as a vector space. We should put a hat on

it also to distinguish it from the twisted derivation of R
1
q.

We have effectively enlarged the algebra R
1
q to an algebra

TqR
1
q by adding to it the element ∂1 with the commutation

relations (5.2).
We noticed above that the differential dx was not real.

In general (df)∗ 6= df∗. Closely related to this is the fact
that the derivation ∂1 is not real. In general (∂1f)∗ 6=
∂1f

∗. Therefore ∂1 is not antihermitian considered as an
element of TqR

1
q. One can introduce a second twisted der-

ivation ∂̄1 dual to the differential d̄. It is defined by the
commutation relations

∂̄1x = 1 + q−1x∂̄1, ∂̄1Λ = q−1Λ∂̄1. (5.3)

We have then a second extension T̄qR
1
q of R

1
q.

The representation (2.2) of R
1
q can be extended to a

representation of TqR
1
q and T̄qR

1
q. We have respectively

[25,15]

∂1|k〉 = −z−1q−k−1|k〉 + z−1βq−k|k − 1〉,
∂̄1|k〉 = z−1q−k|k〉 + z−1β̄q−k−1|k + 1〉 (5.4)

with again two arbitrary complex parameters β and β̄. It is
easy to see that the commutation relations (5.2) and (5.3)
are satisfied. Again the representations are certainly not
unique. We shall conclude from (5.4) that

T̄qR
1
q = TqR

1
q.

Due to the presence of the unit on the right-hand side
of the commutation relations (5.2) and (5.3) the relation
between ∂∗

1 and ∂̄1 is not as simple as it was in the case
of the differentials. Adding the adjoint of Equations (5.2)
to Equations (5.3) yields the commutation relations

x(q∂∗
1 + ∂̄1) = q(q∂∗

1 + ∂̄1)x, Λ(q∂∗
1 + ∂̄1) = q(q∂∗

1 + ∂̄1)Λ.

From this we can conclude that

q∂∗
1 + ∂̄1 = c1Λx

−1 (5.5)

for some constant c1. In terms of the parameters of the
representation (5.4) we find the expression

c1 = z−1(β∗ + q−1β̄)

for c1.
We can consider the derivations e1 and ē1 also as el-

ements of TqR
1
q. As such they satisfy the commutation

relations

e1x = qΛx+ xe1, e1Λ = Λe1,

ē1x = Λ−1x+ xē1, ē1Λ = Λē1.
(5.6)

These are the analogs of (5.2) and (5.3) respectively. One
sees immediately that as elements of TqR

1
q the e1 and ē1

satisfy the relation

e∗
1 + ē1 = c2 (5.7)

for some constant c2. This is the derivation analog of (5.5).
It is to be compared with (3.3). The equation e1f = [λ1, f ]
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relates the derivation e1 to the operator λ1. There is an
ambiguity

λ1 7→ λ1 + z−1γ

in this identification which depends on a complex param-
eter γ. A similar ambiguity exists for λ̄1. As operators on
Rq we find that we can write then

e1 = z−1γ + λ1, ē1 = z−1γ̄ + λ̄1 (5.8)

and in terms of γ and γ̄ we find the expression

c2 = z−1(γ∗ + γ̄) (5.9)

for c2.
If we use the expressions (3.5) then by comparing (5.2)

and (5.3) with (5.6) we deduce as above the relations

∂1 − Λ−1x−1e1 = c3Λ
−1x−1, ∂̄1 − q−1Λx−1ē1 = c4Λx

−1,

where c3 and c4 are two arbitrary constants. We shall here
set these two constants equal to zero. This means that we
choose

γ = β, γ̄ = β̄. (5.10)

We find then the relations

∂1 = θ11e1 = Λ−1x−1e1, ∂̄1 = θ̄11 ē1 = q−1Λx−1ē1
(5.11)

between the derivations (e1, ē1) and the twisted deriva-
tions (∂1, ∂̄1). We recall that the vector space Der(R1

q) is
not a left module over the algebra R

1
q. As operators on Rq

one finds the representations

e1|k〉 = −z−1|k + 1〉 + z−1β|k〉,
ē1|k〉 = z−1|k − 1〉 + z−1β̄|k〉

for the derivations. It follows directly from (5.8) that

βΛ−1 = 1 + qzx∂1, β̄Λ = −1 + zx∂̄1. (5.12)

Inverting these expressions, we find that in fact

T̄qR
1
q = TqR

1
q = R

1
q.

Using the adjoint of the Equations (5.2) we can write (5.11)
in the form

x∂∗
1 − 1 = Λe∗

1, x∂̄1 = Λē1,

from which using (5.7) we deduce that

x(∂∗
1 + ∂̄1) = 1 + z−1(β + β̄)Λ. (5.13)

It is interesting to note that d∂1 and d∂̄1 are well-defined
and not equal to zero.

From (4.9) we are prompted to introduce the antiher-
mitian element eR1 of TqR

1
q with the commutation rela-

tions

[eR1, x] = (qΛ,Λ−1)x, [eR1, Λ] = 0.

From the definition of eR1 as derivation one sees that the
solution is given by

eR1 = λR1 + cR (5.14)

for some complex parameter cR. If β = ±1, β̄ = ∓1 then

cR = ±z−1(1,−1) (5.15)

and using (5.12) one finds the relation

eR1 = ±(x∂̄1, qx∂1)

between eR1 on the one hand and x∂1 and x∂̄1 on the
other.

It does not seem to be possible to construct a real
metric on the twisted derivations without ambiguity. The
problem is complicated by the fact that, whereas d̄x =
(dx)∗, from (5.13) one sees that ∂̄1 6= −∂∗

1 . It would be
natural to define, for example, ∂R1 by the condition

dRx(∂R1) = 1.

However it is easy to see that this is not possible since
if ∂R1 is to be antihermitian as an operator then ∂R1x
cannot be hermitian as an element of the algebra and so
cannot be set equal to one. One could make the choice [11]

∂R1 =
1
2
(∂1 − ∂∗

1 )

or the choice
∂̄R1 =

1
2
(∂̄∗

1 − ∂̄1)

or any combination of the two. We find from the repre-
sentation (5.4) that

x∂R1 =
1
2
z−1β(q−1Λ−1 − Λ),

∂R1x =
1
2
z−1β(Λ−1 − q−1Λ)

from which we conclude that

q∂R1x =
1
2
(q + 1)βΛ−1 + x∂R1, Λ∂R1 = q∂R1Λ.

This is to be compared with (5.2) and (5.3). In particular
we find that as twisted derivation

dRx(∂R1) = ∂R1x =
1
2q

(q + 1)βΛ−1 6= 1.

In view of this ambiguity we shall use the derivation eR1
to define hermitian differential operators.

6 Integration

Because of (3.6), (4.11) and (4.12) we define [5] the (defi-
nite) integrals to be the linear maps from Ω1

q (R1
q), Ω̄

1
q (R1

q)
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and Ω1
R(R1

q) into the complex numbers given by respec-
tively

∫
f1θ

1 = Tr (f1),∫
f̄1θ̄

1 = Tr (f̄1),∫
fRθ

1
R = Tr (fR).

In the last expression the trace includes the sum of the
components. Since the ‘space’ is ‘noncompact’ we have

∫
θ1 = Tr (1) = ∞.

In all cases the integral of an exact form is equal to zero.
For example

∫
df =

∫
e1θ

1 = Tr ([λ1, f ]) = 0.

This is in fact rather formal since it is possible for the
commutator of two unbounded operators to have a non-
vanishing trace. The integral

∫
dx = Tr (e1x) = qTr (Λx) = 0

but the integral

∫
d(Λ−1x) =

∫
Λ−1dx = qTr (x) =

∞∑
−∞

qk = ∞.

We can interpret the trace as an inner-product on the
algebra by setting

〈f |g〉 ≡
∫

(f∗g)θ1 = Tr (f∗g).

The trace defines a state which characterizes the repre-
sentation we are using. It follows immediately from the
definition that an operator which is hermitian as an ele-
ment of the algebra is also hermitian with respect to the
inner-product.

7 The geometry

It is now possible to give an intuitive interpretation of the
metric (1.2) in terms of observables. One can think of the
algebra R

1
q as describing a set of ‘lines’ x embedded in a

‘plane’ (x,Λ) and defined by the condition ‘Λ = constant’.
To within a normalization the unique metric is given by

g(θ1R ⊗ θ1R) = 1. (7.1)

Using it we introduce the element

g′11 = g(dRx⊗ dRx) = (eR1x)2g(θ1R ⊗ θ1R) = (eR1x)2

(7.2)

of the algebra. Then
√
g′11 = eR1x,

(√
g′11

)∗
=

√
g′11. (7.3)

We have a representation of x and dRx on the Hilbert
space Rq. In this representation the distance s along the
‘line’ x is given by the expression

ds(k) = ‖
√
g′
11dRx(|k〉 + |k〉)‖ (7.4)

with as usual g′
11 = (g′11)−1. This comes directly from the

original definition of dx as an ‘infinitesimal displacement’.
Using (4.12) we find that

ds(k) = ‖ |k〉 + |k〉 ‖ = 1.

The ‘space’ is discrete [27] and the spacing between ‘points’
is uniform. The distance operator s can be identified with
the element y introduced in (2.3). This means that if we
measure y using laboratory units, introduced in Equa-
tion (2.5) then we shall do the same with s. In these units
then the distance between neighboring ‘points’ is given by

ds(k) = z.

If one forgets the reality condition then one can intro-
duce the hermitian metric g with g(θ̄1⊗θ1) = 1. One finds
then

g′11 = g(d̄x⊗ dx) = ē1xe1x = q2x2 (7.5)

and one concludes that

ds(i) = ‖
√
g′
11dx|k〉‖ = q. (7.6)

One can also introduce the hermitian metric g with g(e1⊗
e∗
1) = 1. One finds then

g′
11 = g(∂1 ⊗ ∂∗

1 ) = Λ−1x−1g(e1 ⊗ e∗
1)x

−1Λ = q−2x−2

and one finds again the expression (7.6) for the distance.
If one neglects also hermiticity and introduces a metric

g with g(θ1 ⊗ θ1) = 1 then one finds that

g′11 = g(dx⊗ dx) = (e1x)2 = (qΛx)2. (7.7)

Since we have defined a ‘tangent space’ TqR
1
q and a ‘cotan-

gent space’ Ω1(R1
q) it is of interest to interpret the metric

as a map
Ω1

R(R1
q)

g−→ TqR
1
q.

This corresponds to the ‘raising of indices’ in ordinary
geometry. As such it can be defined as the map g(θ1) = e1.
A short calculation yields that this is equivalent to

g(dx) = g′11∂1 (7.8)

as it should be. Although both dx and ∂1 have been repre-
sented on the same Hilbert space we cannot conclude that
in this representation the map (7.8) is given by g = 1.
That is, as operators on Rq, we have dx 6= g′11∂1. One
finds in fact that

(dx− g′11∂1)|k〉 = q2z−1q2k|k+2〉+(α−βqz−1)qk|k+1〉.
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We define covariant derivatives D and D̄ on Ω1(R1
q) as

maps

Ω1(R1
q)

D−→ Ω1(R1
q) ⊗Ω1(R1

q),

Ω̄1(R1
q)

D̄−→ Ω̄1(R1
q) ⊗ Ω̄1(R1

q)

which satisfy [9] left and right Leibniz rules. The metric-
compatible, torsion-free connections are given by the co-
variant derivatives

Dθ1 = 0, D̄θ̄1 = 0.

These equations can be written also as

D(dx) = q2Λ2xθ1 ⊗ θ1, D̄(d̄x) = Λ−2xθ̄1 ⊗ θ̄1.

The real torsion-free covariant derivative compatible with
the real metric is given by

DRθ
1
R = 0. (7.9)

This can also be written in the form

DR(dRx) = (q2Λ2, Λ−2)xθ1R ⊗ θ1R.

The generalized flip σR is given [8] by σR = 1. This yields
[13] the involution

(θ1R ⊗ θ1R)∗ = θ1R ⊗ θ1R

on the tensor product if the covariant derivative (7.9) is
to be real:

DRξ
∗ = (DRξ)∗.

The geometry is ‘flat’ in the sense that the curvature ten-
sor defined by DR vanishes. The interpretation is some-
what unsatisfactory however here because of the existence
of elements in the algebra which do not lie in the center
but which have nevertheless vanishing exterior derivative.
These elements play a relatively minor importance in the
geometry of the algebras R

n
q for larger values of n [24].

8 Yang–Mills fields

Consider the algebra Aq obtained by adding a time pa-
rameter t ∈ R to R

1
q: Aq = C(R)⊗R

1
q. The tensor product

is understood to include a completion with respect to the
topologies. Choose H as the Aq-bimodule which is free of
rank r as a left or right module and assume that is can
be considered as an R

1
qR-bimodule. Introduce a differen-

tial calculus over Aq by choosing the ordinary de Rham
differential calculus over the time parameter and Ω∗

R(R1
q)

over the factor R
1
q. One defines a covariant derivative of

ψ ∈ H as a map

H D−→ Ω1(Aq) ⊗ H
which satisfies the left Leibniz rule

D(fψ) = df ⊗ ψ + fDψ.

We shall henceforth drop the tensor product symbol and
write

Dψ = dtDtψ +DRψ.

We define
Dtψ = (∂t +At)ψ.

Since Aq is an algebra with involution we can choose as
gauge group the set Uq(r) of unitary elements of Mr(Aq).
A gauge transformation g ∈ Uq is a map

ψ 7→ ψg, A 7→ g−1Ag + g−1dg

which is independent of Λ. It is easy to see [7,21] that
φR = AR − θR transforms under the adjoint action of the
gauge group. We define then

DRψ = −θRψ − ψφR. (8.1)

This covariant derivative is covariant under the right ac-
tion of the gauge group and satisfies a left Leibniz rule.
The covariant derivative and the field strength transform
as usual

Dψ 7→ (Dψ)g, F 7→ g−1Fg

One can also write DRψ = θ1DR1ψ with DR1 = eR1 +
AR1. The field strength can be written then

Fψ = D2ψ = dt θ1RψFt1

with
Ft1 = ∂tAR1 − eR1At.

When the gauge potential vanishes one has from (8.1)

DRψ = θ1ReR1ψ.

To form invariants we introduce the metric (7.1). We
define the matter action SM by analogy with the commu-
tative case:

SM = Tr
∫
dt(Dtψ

∗Dtψ +DR1ψ
∗DR1ψ). (8.2)

The trace is here over the Lie algebra of the gauge group
and over the representation of the algebra R

1
q. We define

also as usual the Yang-Mills action SY M as

SY M =
1
4
Tr (Ft1Ft1)

and the action to be the sum S = SM + SY M . The trace
however would depend on the representation of the alge-
bra and it is not obvious how one should vary S. To define
the trace we must consider explicitly the representations
of ψ and At and AR1 on the Hilbert space Rq. Since ‘space’
has only one dimension there are no dynamical solutions
to the vacuum Yank-Mills equations. There is no disper-
sion relation since there are no transverse modes. One can
also write the action as an integral using the definition of
Sect. 6.

In the spirit of noncommutative geometry the ‘state
vectors’ play the role of the set of points. The eigenvalues
of an observable of the algebra, in a given representation,
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are the noncommutative equivalents of the values which its
classical counterpart can take. An eigenvector associated
to a given eigenvalue describes a set of states in which
the given observable can take the prescribed value. This
is exactly like quantum mechanics but in position space.
Consider now a field configuration, for example an element
of the initial algebra A if it is a scalar field or an element
of an algebra of forms over A if it is a Yang-Mills field.
Suppose that both of these algebras have a representation
on some Hilbert space and suppose that there exists a well-
defined energy functional which is also represented as an
operator on the Hilbert space. A vacuum configuration
would be then an element of the algebra which is such
that the expectation value of the corresponding value of
the energy functional in any state vanishes. This is the
same as saying that a field is equal to zero if the value of
its energy is equal to zero at every point of space.

In the ‘classical’ noncommutative case a derivation, if
it exists at all, is a map of the algebra into itself; it is
not an element of the algebra. In the case we are consid-
ering this is not so. The algebra R

1
q is a position space

described by the subalgebra generated by x extended by
Λ which is an element of the associated phase space. The
differential calculus however is somehow restricted to the
position space by the condition dΛ = 0. Both the initial
algebra and the algebra of forms contain then operators
which correspond to derivations. We have in fact given the
representation of these elements on Rq, the same Hilbert
space on which the ‘position’ variables and the forms are
represented. A vacuum configuration is then something
different than it is in the ‘classical’ case.

Consider, for example, a scalar field ψ(x) ∈ R
1
q and

suppose that the energy functional is of the simple form
E = (eR1ψ)∗(eR1ψ). If eR1 is considered as partial deriva-
tive then E = E(x) depends on the position variable alone
and a vacuum configuration would be one in which the
expectation value of E vanishes for all state vectors. This
would normally be one with ψ = ψ0 for some ψ0 ith
eR1ψ0 = 0. However eR1 as operator belongs also to R

1
q

and the expression for the energy functional could be in-
terpreted as one quadratic in this element. In this case
the only possible vacuum configuration would be ψ = 0.
There exist particular state vectors for which the energy
functional of more complicated configurations vanish. As
an example of this we return to the Yang-Mills case. One
would like a vacuum to be given as usual by ψ = 1 (the
unit cyclic vector of H) and AR = 0. One finds then as
condition that

DRψ(|k〉 + |k〉) = dR(|k〉 + |k〉) = 0.

To be concrete we shall suppose that cR is given by (5.15).
From (4.8) one sees that the vacuum equation leads to the
conditions

(Λ− 1)
∑

k

ak|k〉 = 0, (Λ−1 − 1)
∑

k

āk|k〉 = 0

on the two copies of Rq. The vacuum state vectors form
then a subspace of Rq of dimension 2 spanned by the
vectors given by ak = 1, āk = 1. These values depend

of course on our choice of cR. All vacuum state vectors
have infinite norm. The vacuum state vectors would be
the analog of the vacuum of quantum field theory which
is defined as the vector in Fock space which is annihilated
by the energy-momentum vector of Minkowski space. The
Fock-space vector is taken to be of unit norm.

9 The Schrödinger equation

Recall that on a curved manifold with metric gµν the lapla-
cian is defined to be the hermitian operator

∆ = −gµνDµDν = − 1√
g
∂µ(

√
ggµν∂ν).

Because of (8.1) on the geometry defined by Ω∗
R(R1

q), with
metric (7.1), this becomes

∆Rψ = −e2R1ψ. (9.1)

We shall suppose that the gauge-covariant Schrödinger
equation has the usual form

iDtψ =
1

2m
∆Rψ (9.2)

where ∆R is the Laplace operator (9.1). There is a con-
served current which we write in the form

∂tρ = DR1J
1
R (9.3)

with as usual

ρ = ψ∗ψ, JR1 =
i

2m
(ψ∗DR1ψ −DR1ψ

∗ψ).

The conservation law follows directly from the field equa-
tions. Normally one derives the latter from an action prin-
ciple. In the present situation this would be a non-relativ-
istic form of the expression (8.2):

S = Tr
∫
dt(iψ∗Dtψ − 1

2m
DR1ψ

∗DR1ψ).

Consider the relativistic case and assume the usual
form

−∂2
t ψ = ∆Rψ +m2ψ (9.4)

for the Klein-Gordan equation. Suppose that AR = 0. The
laplacian has then a set of ‘almost’ eigenvectors. From the
commutation relations

eikyΛ = eikΛeiky

one finds that

e1e
iky = z−1(eik − 1)Λeiky,

ē1e
iky = z−1(1 − e−ik)Λ−1eiky

from which it follows that

eR1e
iky = ikLeiky
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where

L =
1

2ikz

(
(eik − 1)Λ, (1 − e−ik)Λ−1

)
.

From the expression (9.1) one concludes then that

∆Re
iky = k2L2eiky.

We could renormalize the space unit as in Equation (2.5)
to laboratory units. If we keep the Planck units we must
renormalize the time unit so it will be also in Planck units.
We do this by the transformation

z−1t 7→ t.

We find then that

ψ = e−i(ωLt−ky)

is a solution to (9.4) provided the dispersion relation

(ω2 − k2)z2L2 = m2

is satisfied. However the above dispersion relations are
misleading since ω can not be identified with the energy;
the coefficient of the time coordinate is in fact the product
ωL and we must set therefore

E = ωL.

We would like to consider ψ as an element of a free
A0-module. We recall that A0 is the commutative subal-
gebra of A generated by x. In general however A0 is not
invariant under the action of the hermitian derivations.
We consider then the limit q → 1. In this limit we have
argued that Λ → 1 but at the same time z → 0 so the fol-
lowing argument is subject to caution. We supposed that
as q → 1 we have ē1 → e1. In this rather singular limit we
can identify then

eR1 =
1
2
(e1 + ē1)(1, 1) + o(z)

and in this limit

L = z−1 sin k
k

(1, 1) + o(1).

This second equality seems to follow from the first but it is
especially difficult to justify. If we accept it however then
with the new time unit we find that

E2 = ω2 sin2 k

k2

and the dispersion relation in the relativistic case becomes

E2 = m2 + sin2 k. (9.5)

If k = πn, with n ∈ Z then E = 0 and one has

eR1e
−iky = 0.

In the massless case this yields a set of ‘stationary-wave’
solutions to the field equations.

When k << π/2 (in Planck units) one obtains the
usual dispersion relation E2 = m2 +k2. In the case m <<
1 as k → π/2 then E tends to a maximum value equal
to 1 (again in Planck units). Values of k greater than π/2
would be difficult to interpret physically.. For comparison
we recall that, neglecting the gap corrections, the disper-
sion relation for acoustical phonons on a lattice [17] is of
the form

E2 = sin2 k

2
.

Here E is the phonon energy and k is the wave number.
This has the same form as (9.5) when m = 0. The factor
1/2 is a convention. The first Brillouin zone is the range
−π ≤ k ≤ π. There are also optical phonons which are
similar to the case m > 0 but they have a different disper-
sion relation. The ‘space’ R

1
q is not an ordinary crystal.

10 Phase space

If we wish to construct a real phase ‘space’ associated to
the position ‘space’ we must define two hermitian opera-
tors which can play the role of ‘position’ and ‘momentum’.
We have already remarked that the distance operator s
can be identified with the element y introduced in (2.3).
As ‘position’ operator we choose then the renormalized y
given by (2.5). A short calculation shows that

eR1y = zK−1

where the element K was introduced in (4.15). If we con-
sider then eR1 as an operator we have the commutation
relation

[eR1, y] = (Λ,Λ−1).

We have already noticed that eR1 is antihermitian. We
define then the momentum associated to y to be

py = −ieR1 = iz−1(Λ,−Λ−1).

We have not written the extra constant term cR of Equa-
tion (5.15) since it does not contribute to the commutation
relation:

[py, y] = −ih. (10.1)

We have here introduced the hermitian element

h = (Λ,Λ−1)

of R
1
q × R

1
q. Since we suppose that Λ → 1 as q → 1 we

see that the commutation relation (10.1) becomes the or-
dinary one in this limit.

We introduce the ‘annihilation operator’

a =
1√
2
(y + ipy). (10.2)

Then from (10.1) follows the commutation relation

[a, a∗] = h. (10.3)
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It is not possible to express h in terms of a and a∗. The
operator eR1 was taken as the antihermitian part of e1; the
operator h depends also on the hermitian part. From (2.4)
we find however that

[a, h] =
1
2
z2(a∗ − a). (10.4)

To define a vacuum and a number operator we must ‘dress’
the operator a, introduce an operator b so that the stan-
dard relations [b, b∗] = 1 hold. It does not seem to be
possible to do this exactly but it can be done as a pertur-
bation series in z. One finds from (10.3) and (10.4) that

b = h−1/2a+
1
4
z2a+

1
6
z2(a− a∗)3 + o(z4).

The vacuum is chosen then as usual by the condition
b|0〉 = 0, the number operator is given by N = b∗b and
the number representation |n〉 for n ∈ N by

|n〉 =
1√
n!

(b∗)n|0〉.

From (10.4) we find that

[N,h] =
1
2
z2((b∗)2 − b2) + o(z4).

There have been several q-deformed versions of the
harmonic oscillator [20,1,4,12,19]. We shall reproduce here
the equivalent calculations for the geometry described in
Sect. 5. As hamiltonian we choose

H =
1
2
(∆R + y2)

in Planck units. This can be written also as H = a∗a+ 1
2h

and in terms of b it is given by

H = b∗hb+
1
2
h− 1

2
z2b∗b

+
1
6
z2((b− b∗)3b− b∗(b− b∗)3) + o(z4).

We see then that in terms of the ‘dressed’ annihilation and
creation operators the ‘bare’ hamiltonian is rather compli-
cated. In particular the ‘physical vacuum’ is no longer an
eigenvector of the ‘bare’ hamiltonian:

H|0〉 =
1
2
|0〉 +

1
6
z2|1〉 +

1√
2
z2|2〉 − 1√

6
z2|3〉 + o(z4).

11 Non-local metrics

We have devoted special attention to one particular metric
on the calculus Ω∗

R(R1
q) for reasons given in Sect. 1: it is

the only local metric. To test what this means in practice
it is of interest to examine other metrics, which necessarily
do not fulfill the locality condition. We would like the
metric to have an associated linear connection so we shall

first examine the most general form which this can take.
We set as usual

D1θ
1 = −ω1

11θ
1 ⊗ θ1, D̄1θ̄

1 = −ω̄1
11θ̄

1 ⊗ θ̄1

as Ansatz for the linear connection. From the general the-
ory [9] these must satisfy a left and right Leibniz rule

D1(fθ1) = df ⊗ θ1 − fω1
11θ

1 ⊗ θ1,

D1(θ1f) = σ(θ1 ⊗ df) − ω1
11fθ

1 ⊗ θ1,

D̄1(fθ̄1) = d̄f ⊗ θ̄1 − fω̄1
11θ̄

1 ⊗ θ̄1,

D̄1(θ̄1f) = σ̄(θ̄1 ⊗ d̄f) − ω̄1
11fθ̄

1 ⊗ θ̄1,

where f ∈ R
1
q and the generalized flips [8] σ and σ̄ can be

written as

σ(θ1 ⊗ θ1) = Sθ1 ⊗ θ1, σ̄(θ̄1 ⊗ θ̄1) = S̄θ̄1 ⊗ θ̄1.

From the compatibility conditions

D1(Λθ1) = D1(θ1Λ), D1(xθ1) = D1(θ1x),
D̄1(Λθ̄1) = D̄1(θ̄1Λ), D̄1(xθ̄1) = D̄1(θ̄1x)

it is easy to see that, to within a multiplicative constant,
there are only two solutions, the one given previously in
Sect. 6 and a new one given by

ω1
11 = Λ, S = q−1, ω̄1

11 = qΛ−1, S̄ = q. (11.1)

We set

g(θ1 ⊗ θ1) = g11, g(θ̄1 ⊗ θ̄1) = ḡ11.

The metric compatibility condition [8] can be written

dg11 = −(1+S)ω1
11g

11θ1, d̄ḡ11 = −(1+S̄)ω̄1
11ḡ

11θ̄1.

The possible solution to this equation, corresponding to
the linear connection (11.1), is given by

g11 = (qΛx)2, ḡ11 = (Λ−1x)2.

This can also be written in the form

g(dx⊗ dx) = 1, g(d̄x⊗ d̄x) = 1 (11.2)

and the corresponding covariant derivative can be written
also as

D1dx = 0, D̄1d̄x = 0.

The ‘space’ now is a discrete subset of the positive real
axis with an accumulation point at the origin. The ‘non-
locality’ means that if f is a ‘function’ and α a form then
the norm of fα cannot be equal to f times the norm of α.
To see this we multiple (11.2) from the right by x. If we
supposed that the metric were left and right linear then
we would find

x = xg(dx⊗ dx) = g(xdx⊗ dx)
= q2g(dx⊗ dxx) = q2g(dx⊗ dx)x = q2x.

The first and fifth equalities are mathematical trivialities;
the third follows directly from (3.1) . Therefore either the
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second or forth, or both, must be false. There are no 2-
forms and so the curvature and torsion of the non-local
metric vanish.

The Ansatz for a covariant derivative on the real cal-
culus is

DR1θ
1
R = −ω1

R11θ
1
R ⊗ θ1R. (11.3)

If the generalized flip is given by σR = (q−1, q) then the
appropriate involution [13] on the tensor product is given
by

(θ1R ⊗ θ1R)∗ = (q−1, q)(θ1R ⊗ θ1R).

The solution to (11.3) is given by

ω1
R11 = (Λ, qΛ−1), (ω1

R11)
∗ = (q, q−1)ω1

R11,

The connection coefficient is not hermitian but the covari-
ant derivative is real.

As an example of an application we return to the Yang-
Mills fields written, for simplicity, using the derivations
D1 instead of DR and where now of course the D1 must
be chosen compatible with the new metric (11.2). The
differential calculus over Aq is now the ordinary de Rham
differential calculus over the time parameter and Ω∗(R1

q)
over the factor R

1
q. Otherwise all is as before in Sect. 8

except that A is now given by

A = dtAt + θ1A1

and
dψ = dt∂tψ + θ1e1ψ

with e1ψ = [λ1, ψ]. More important, the action S becomes

SM = Tr (Dtψ
∗Dtψ) + g11Tr (D1ψ

∗D1ψ)

+
1
4
g11Tr (Ft1Ft1).

The metric coefficient g11 = (qΛx)−2 does not commute
with the other factors in this expression so there is an
ordering ambiguity. But it must be outside the trace in
order not to destroy gauge invariance. Motivated by Equa-
tion (5.11) we introduce the ‘twisted’ covariant derivative
∇1 by the equation

D1 =
√
g11 ∇1.

If we write also A1 =
√
g11B1 and set Dt = ∇t and

Gt1 = ∂tB1 − ∂1Bt then we find that

∇ = ∂1 +B1, Ft1 =
√
g11Gt1

and we can write the action in the form

SM = Tr (∇tψ
∗∇tψ) + g11Tr (

√
g11 ∇1ψ

∗√g11 ∇1ψ)

+
1
4
g11Tr (

√
g11Gt1

√
g11Gt1).

We identify ψ with an element ψ(x) in the subalgebra of
R

1
q generated by the element x and we suppose also that

B1 = B1(x). The action can be written then in the form

SM = Tr (∇tψ
∗∇tψ) + Λ−1Tr (∇1ψ

∗Λ∇1ψ)

+
1
4
Λ−1Tr (Gt1ΛGt1).

It is the quantity ΛGt1 which is gauge covariant.
As a second example of we return to the Schrödinger

equation, written again using the covariant derivative D1
compatible with the metric (11.2). There are two possible
forms for the Laplace operator ∆. In the absence of a
gauge potential one can choose either

∆ = −g11D1D1 = −qΛ−2x−2e21 + qΛ−1x−2e1

or

∆ = − 1√
g
(e1

√
gg11e1) = −qΛ−2x−2e21 + Λ−1x−2e1.

The two coincide when q = 1. We shall choose the latter.
If we introduce then the current ‘density’

√
gJ1 =

i

2m
Λ−1(ψ∗Λ∂1ψ − Λ∂1ψ

∗ψ)

the right-hand side of (9.3) becomes

1√
g
e1(

√
gJ1) =

i

2m
qΛ−1∂1(ψ∗Λ∂1ψ − Λ∂1ψ

∗ψ).

We have here used the relations (5.11). The conservation
law becomes then

∂tρ =
1√
g
e1(

√
gJ1).

This is the equivalent of (9.3) in the new metric.
It is of interest to compare the structure of the ‘space’

endowed with the two different metrics we have consid-
ered. We saw that the weak completion of the algebra R

1
q

was in both cases a type-I∞ factor. The metric can have
no effect on this since the set of ‘points’ is discrete and
the induced measures are absolutely continuous one with
respect to the other. With the first metric the ‘space’ is
an equally spaced lattice structure within the entire real
line. With the second metric one finds a lattice structure
with variable spacing within the half-line (0,∞). In this
case it would be natural either to add the origin to obtain
a ‘space’ with boundary or to add the origin and another
copy of the ‘space’ to obtain again the entire real line. In
either case the algebra is no longer a factor. It is also to
be noticed that the fact we obtained a factor of type I∞ is
due to a choice of representation and not the structure of
the algebra. Had we chosen a representation with a con-
tinuous spectrum for Λ the resulting factor would be of
type II∞ [23].
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